Time-series event-based prediction: An unsupervised learning framework based on genetic programming
نویسندگان
چکیده
In this paper, we propose an unsupervised learning framework based on Genetic Programming (GP) to predict the position of any particular target event (defined by the user) in a time-series. GP is used to automatically build a library of candidate temporal features. The proposed framework receives a training set S = {(Va)|a = 0...n}, where each Va is a time-series vector such that ∀Va ∈ S, Va = {(xt)|t = 0...tmax} where tmax is the size of the time-series. All Va ∈ S are assumed to be generated from the same environment. The proposed framework uses a divide-and-conquer strategy for the training phase. The training process of the proposed framework works as follow. The user specifies the target event that needs to be predicted (e.g., Highest value, Second Highest value, ..., etc.). Then, the framework classifies the training samples into different Bins, where Bins = {(bi)|i = 0...tmax}, based on the time-slot t of the target event in each Va training sample. Each bi ∈ Bins will contain a subset of S. For each bi, the proposed framework further classifies its samples into statistically independent clusters. To achieve this, each bi is treated as an independent problem where GP is used to evolve programs to extract statistical features from each bi’s members and classify them into different clusters using the K-Means algorithm. At the end of the training process, GP is used to build an ‘event detector’ that receives an unseen time-series and predicts the time-slot where the target event is expected to occur. Empirical evidence on artificially generated data and real-world data shows that the proposed framework significantly outperforms standard Radial Basis Function Networks, standard GP system, Gaussian Process regression, Linear regression, and Polynomial Regression.
منابع مشابه
Chapter 7. Evolving Connectionist and Fuzzy - Connectionist Systems: Theory and Applications for Adaptive, On-line Intelligent Systems
The paper introduces one paradigm of neuro-fuzzy techniques and an approach to building on-line, adaptive intelligent systems. This approach is called evolving connectionist systems (ECOS). ECOS evolve through incremental, online learning, both supervised and unsupervised. They can accommodate new input data, including new features, new classes, etc. New connections and new neurons are created ...
متن کاملAction Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملSegment-based SVMs for Time Series Analysis
Enabling computers to understand human and animal behavior has the potential to revolutionize many areas that benefit society such as clinical diagnosis, humancomputer interaction, and social robotics. Critical to the understanding of human and animal behavior, and any temporally-varying phenomenon in general, is the capability to segment, classify, and cluster time series data. This thesis pro...
متن کاملTrading strategy design in financial investment through a turning points prediction scheme
Turning points prediction has long been a tough task in the field of time series analysis due to its strong nonlinearity, and thus has attracted many research efforts. In this study, the turning points prediction (TPP) framework is presented and further employed to develop a novel trading strategy designing approach to financial investment. The TPP framework is a machine learning-based solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 301 شماره
صفحات -
تاریخ انتشار 2015